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Abstract

In this script we introduce two small yet uncommon examples on the motion of an
accelerated point particle in the special theory of relativity: First, the motion in an
oscillating potential, −E sin(ωx0), and second, the problem of the relativistic harmonic
oscillator. The aim of this script is threefold: First, illustrate the Lagrangian and Hamil-
tonian formalism for the relativistic mechanics of a point particle by means of two simple
problems. Second, give a counter-example against the sometimes encountered belief that
accelerated motion could not be handled by the special theory of relativity. Third, cal-
culate the time-dilation of the twin-paradox in an example problem with steady motion
and velocity.

1 Introduction

This script is concerned with the accelerated motion of a point particle with charge e under
the influence of a four-vector potential A. We will present the general equations of motion and
analytically derive the solution for two simple special cases of A.

Three basic motivations lead to the writing of this script: First, illustrating the Lagrangian
and Hamiltonian formalisms as they apply to special relativistic point particle mechanics (al-
though not much of the formalism would have to be altered for a general relativistic application).
The formalism is then applied to the case where the four-vector potential is an oscillating po-
tential, eA = −eE sin(ωx0) e1, and a harmonic oscillator potential, eA = mω2(x1)2/2 e0. These
special cases have the advantage that the equation of motion may be solved in closed form.
The examples are simple and yet not so simple that the calculations become trivial.

The second motivation is the still existing belief that the special theory of relativity is unable
to describe accelerated motion. Despite its obvious falseness this belief can be encountered now
and then and this script delivers excellent counter-examples.

Finally, the third point is concerned with the calculation of the time-dilation in the twin-
paradox. Usual sample calculations on the amount of time-dilation involve unrealistic motion
with instantaneous change of velocity. A common example would be the separation of motion
into two phases, I and II, of equal duration and considering motion with constant velocity v
in phase I and −v in phase II. Both problems presented in this script involve periodic motion,
i.e. the particle returns to its starting point after a finite period of time. Hence they serve as
far more realistic sample cases to calculate the amount of time-dilation as they involve steady
changes of position and velocity and do not require a separation into different phases.

One should note, however, that the aforementioned examples are still not fully realistic but
can serve only as illustrations for the underlying physical principles. While the electromagnetic
field that follows from the two four-vector potentials might indeed be realized by an appropriate
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experimental setup, the accelerated motion of the charged particle would deviate from our
solutions due to energy-loss by the emission of radiation. This energy-loss is ignored in the
following calculations, however, because we would like to concentrate on problems that are
analytically solvable. Also, while radiative energy-loss would change the particle’s motion,
especially in the extreme relativistic scenarios, it could in no way cause the disappearance of
relativistic effects such as time-dilation.

We begin in section 2 with the introduction of the general formalism for the mechanics
of a relativistic point particle in an external field. This formalism is then applied to the
aforementioned oscillating potential in section 3 and to the relativistic harmonic oscillator in
section 4. A short summary is presented in section 5.

2 The formalism

In this section we will give an introduction to the Lagrangian and Hamiltonian formalism in
order to describe the motion of a relativistic charged particle in an external four-vector potential
A. First, however, we will clarify the notation.

We are concerned with special relativistic problems, i.e. it is appropriate to describe space-
time by the four-dimensional Minkowski space M with metric g. In Minkowski space it is
possible to define a coordinate frame C with coordinates (xµ), µ = {0, 1, 2, 3}, such that the
spacetime metric g is given by the Minkowski metric η,

g → η = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2. (1)

The coordinate frame C coincides with the rest-frame of an inertial observer. Let us denote
basis vectors and one-forms induced by C as (eµ) and (eµ), respectively,

eµ = ∂µ, eµ = dxµ. (2)

For a spacetime vector v and one-form ω we write

v = vµeµ, ω = ωµe
µ, (3)

respectively, where we have made use of Einstein’s summation convention for contracted upper
and lower indices,

vµωµ :=
3∑

µ=0

vµωµ. (4)

Every vector v defines a one-form v via

v = vµe
µ, vµ = gµνv

ν . (5)

The scalar product between two vectors v and u is denoted by a dot-product,

v · u = v(u) = u(v)

= gµνu
µvν = ηµνu

µvν

= −u0v0 + u1v1 + u2v2 + u3v3. (6)

The scalar product of a vector v with itself is simply denoted by v2. The Minkowski metric
η in eq. (1) can be used to define pseudo rotations, the well known Lorentz transformations.
The transformations matrix Λ = (Λµ

ν) of such a Lorentz transformation satisfies

η(Λ,Λ) = (ηαβΛα
µΛβ

ν) = (ηµν) = η. (7)
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The set of Lorentz transformations forms a group as can be easily proven. From the definition
(6) we can see that the scalar product is invariant under Lorentz transformations,

v · u = v′ · u′, v′ = Λ · v, u′ = Λ · u. (8)

The action S[xf , xi] for a relativistic point particle’s motion between the events xi and xf in
spacetime is invariant under Lorentz transformations,

S[x′f , x
′
i] = S[xf , xi], x′f/i = Λ · xf/i, x′f/i

2 = xf/i
2. (9)

A possible choice for S, which has the correct non-relativistic limit, reads

S[xf , xi] = −m
τf∫
τi

dτ
√
|ẋ2|, (10)

where x(τf/i) = xf/i and ẋ = dx/dτ with the arbitrary world line parameter τ . Obviously this
action is not only Lorentz-invariant but also reparameterization-invariant, i.e. invariant under
the action of an arbitrary diffeomorphism Φ on τ ,

S[xf , xi] = −m
τf∫
τi

dτ
√
|ẋ2| = −m

τ ′f∫
τ ′i

dτ ′
√
|ẋ′|2, (11)

where τ ′ = Φ(τ), x(τ ′f/i) = xf/i and ẋ′ = dx/dτ ′. The four-velocity ẋ is a time-like vector, i.e.

we have ẋ2 < 0 in all reference frames.
Let us consider the action of a relativistic point particle with charge e under the action of

an external four-vector potential A. In this case the action (10) has to be replaced by

S[xf , xi] =

τf∫
τi

dτ
(
−m

√
|ẋ2|+ eA(x) · ẋ

)
, (12)

which is also reparameterization-invariant. Writing the action in terms of the Lagrangian L
yields

S[xf , xi] =

τf∫
τi

dτ L(x(τ), ẋ(τ)),

L(x(τ), ẋ(τ)) = −m
√
|ẋ(τ)|2 + eA(x(τ)) · ẋ(τ). (13)

From eqs. (13) we may derive the equation of motion by requiring the full differential δS of
the action to vanish for physical trajectories,

δS =

τf∫
τi

dτ (δx · ∂xL+ δẋ · ∂ẋL)

= δx · ∂ẋL(x(τ), ẋ(τ))

∣∣∣∣∣
τf

τi

+

τf∫
τi

dτ δx ·
(
∂xL−

d(∂ẋL)

dτ

)
. (14)
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Going from the first to the second line, we have performed a partial integration. The variation
is set to vanish at the endpoints δx(τf ) = δx(τi) = 0 so that the first term drops out. The
Euler-Lagrange equations of motion for the relativistic point particle then follow as

d(∂ẋL)

dτ
= ∂xL, (15)

which resembles the non-relativistic form. Inserting the Lagrangian from eqs. (13), and using
|ẋ|2 = −ẋ2, yields

d

dτ

(
mẋ√
|ẋ|2

+ eA

)
= e∂xA · ẋ

⇔ d

dτ

mẋ√
|ẋ|2

= e (∂xA · ẋ− (ẋ · ∂x)A)

= eF · ẋ, (16)

where we have introduced the electromagnetic field strength tensor,

F = (Fµν) = (∂µAν − ∂νAµ). (17)

The equations of motion of the Lagrangian formalism (16) are second order differential equations
in the variable x. In order to obtain the Hamiltonian form of the equations of motion we have
to calculate the canonical momenta p,

p = ∂ẋL(x, ẋ) =
mẋ√
|ẋ2|

+ eA(x). (18)

Let us further define modified canonical momenta π via

π = p− eA =
mẋ√
|ẋ2|

. (19)

Using ẋ2 < 0, we obtain for the square of π,

π2 = −m2. (20)

Rewriting the action and Lagrangian in eqs. (13), then yields

S[xf , xi] =

xf∫
xi

dx · p,

L(x(τ), ẋ(τ)) = ẋ · p. (21)

From these relations we find that the Hamiltonian of the system vanishes identically,

H(x, p) = ẋ · p− L(x, ẋ) ≡ 0. (22)

One should note, however, that eqs. (20) and (22) both follow from eq. (18) which in turn is
derived from the Lagrangian and connects position x to momentum p. If we choose to start
with the Hamiltonian approach, on the other hand, we have to treat x and p as independent
variables. The condition on π imposed by eq. (20) then has to be implemented by a suitable
auxiliary function H,

S[xf , xi] =

xf∫
xi

dx · p−
τf∫
τi

dτ H(τ, x(τ), p(τ)), (23)
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where H vanishes if eq. (20) is satisfied. Both the action S, as well as the first term in eq. (23)
are reparameterization-invariant so the combination dτ H must be reparameterization-invariant
as well. The condition (20) is also reparameterization-invariant and so we may write

H(τ, x, p) = λ(τ)H(x, p), (24)

where H is itself reparameterization-invariant and vanishes if eq. (20) is satisfied. This is the
behavior we expect from a relativistic Hamiltonian.

We find it convenient to define H in a way that resembles the form of a non-relativistic
Hamiltonian,

H(x, p) =
π2 +m2

2m
=

(p− eA(x))2 +m2

2m
. (25)

In order to preserve the reparameterization-invariance of the action, the Lagrange multiplier λ
has to behave according to

dτλ(τ) = dτ ′λ′(τ ′), (26)

under a reparameterization τ → τ ′ = Φ(τ), which in turn implies that

λ′(τ ′) =
dτ

dτ ′
λ(τ). (27)

We now have obtained the following reparameterization-invariant action

S[xf , xi] =

xf∫
xi

dx · p−
τf∫
τi

dτ λH

=

τf∫
τi

dτ (ẋ · p− λH) . (28)

The full differential of the action under variation of the independent variables x, p and λ reads

δS = δx · p

∣∣∣∣∣
τf

τi

+

xf∫
xi

dτ
(
−δx · (ṗ+ λ∂xH) + δp ·

(
ẋ− λ∂pH

)
− δλH

)
, (29)

where the variation is set to vanish at the endpoints δx(τf ) = δx(τi) = 0 as usual, so that
the first term drops out. Requiring δS = 0 for physical trajectories, we obtain the following
equations of motion

ẋ = λ∂pH,

ṗ = −λ∂xH,
H = 0. (30)

The third line in this set of equations enforces eq. (20) that we had previously obtained in the
Lagrangian formalism.

Note, however, that instead of formulating the Hamiltonian equations of motion (30) we
could just as well return to the Lagrangian formalism that we started with, keeping the manifest
gauge freedom that is represented by the auxiliary field λ,

ẋ = λ∂pH = λ
π

m
,
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L =
mẋ2

2λ
+ eA · ẋ− λm

2
. (31)

In this way we arrive at a Lagrangian with a kinetic term that looks quite like in the non-
relativistic limit, i.e. without the square root from eq. (12),

S[xf , xi] =

τf∫
τi

dτ

(
mẋ2

2λ
+ eA · ẋ− λm

2

)
. (32)

Requiring that the variation of the action with respect to λ vanishes, δS/δλ = 0, yields the
constraint

ẋ2 = −λ2. (33)

Since this is not a dynamic equation we could either insert this relation back into eq. (32),
which would yield eq. (12) or choose a fixed value for λ, in this way also fixing the world line
parameter τ . Let us choose the second alternative and set

λ ≡ 1 ⇒ ẋ2 = −1, (34)

so that

S[xf , xi] = −m(τf − τi)
2

+

τf∫
τi

dτ

(
mẋ2

2
+ eA(x) · ẋ

)
. (35)

Thus we were able to use the reparameterization-invariance of the action (12) to choose a
parameterization such that the action is reminiscent of a non-relativistic point particle’s action.
With this choice of gauge, the Lagrangian equations of motion (16) simply read

mẍ = eF · ẋ. (36)

In the following two sections we will calculate two simple problems on the relativistic motion
of a charged point particle accelerated by an external potential. We will use the Hamiltonian
equations of motion (30) in both cases since the calculations turn out to be more convenient in
this formalism.

3 An oscillating potential

As a first problem let us consider a point particle in an oscillating potential. We would like
to perform the calculation in a coordinate system C with coordinates (x0, x1, x2, x3), which
coincides with the rest-frame of an inertial observer. Hence the spacetime metric is simply
given by eq. (1) in this coordinate system.

Let us now consider the oscillating potential

eA(x) = −E sin(ωx0) e1, (37)

where E is the field strength and ω the cyclic frequency of the oscillation. The Lagrangian (31)
and Hamiltonian (25) with this potential read, respectively,

L(x, ẋ) =
m

2

[
−1− (ẋ0)2 + (ẋ1)2 + (ẋ2)2 + (ẋ3)2

]
− ẋ1E sin(ωx0),
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H(x, p) =
−(p0)

2 + (p1 + E sin(ωx0))2 + (p2)
2 + (p3)

2 +m2

2m
. (38)

The Hamiltonian formalism is the more convenient choice for this particular problem. From
the Hamiltonian equations of motion (30) we find

ẋ0 = −p0
m
, ṗ0 = −p1 + E sin(ωx0)

m
ωE cos(ωx0),

ẋ1 =
p1 + E sin(ωx0)

m
, ṗ1 = 0,

ẋ2 =
p2
m
, ṗ2 = 0,

ẋ3 =
p3
m
, ṗ3 = 0, (39)

together with the Hamiltonian constrain, H = 0,

(p0)
2 =

(
p1 + E sin(ωx0)

)2
+ (p2)

2 + (p3)
2 +m2. (40)

Let us consider the initial conditions

x(0) = 0, ẋ(0) = e0. (41)

Inserting these initial conditions into the equations of motion yields

x2 = x3 = p1 = p2 = p3 ≡ 0, p0(0) = −m, (42)

as well as

ẋ1 =
E
m

sin(ωx0), ṗ0 = −ωE
2

m
sin(ωx0) cos(ωx0). (43)

Using eq. (40) together with the equations of motion we obtain

ẋ0 =
√

1 + (ẋ1)2 =
√

1 + α2 sin2(ωx0), (44)

where we have written α = E/m and made use of the initial condition ẋ0(0) = 1. We can easily
verify that this expression also satisfies the equation for ṗ0. Since both ẋ0 and ẋ1 are given as
functions of x0 and not τ we should calculate the velocity v1 = dx1/dx0 that is measured in
the coordinate frame C,

v1 =
dx1

dx0
=
ẋ1

ẋ0
=

α sin(ωx0)√
1 + α2 sin2(ωx0)

. (45)

The maximum of the velocity solely depends on α,∣∣v1∣∣ ≥ α√
1 + α2

, (46)

and hence on the strength E of the external field as well as the particle mass m. The velocity
v1 is depicted in fig. 1 for different values of α and ω. Note especially how the velocity profile
resembles that of a harmonic oscillator for small values of α but approaches a step-function
with increasing α.

The trajectory x1(x0) is given by the following relation:

x1(x0) =

x0∫
0

dt v1(t) =

x0∫
0

dt α sin(ωt)√
1 + α2 sin2(ωt)

. (47)
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Figure 1: Velocity v1 = dx1/dx0 as measured in the coordinate frame C plotted for varying α,
constant ω (left) and constant α, varying ω (right).

In order to solve the integral, let us introduce the variable y,

y =
α cos(ωt)√

1 + α2
, dy = −dt αω sin(ωt)√

1 + α2
, (48)

so that we obtain

x1(x0) = −
y(x0)∫
y(0)

dy√
1− y2

=
1

ω

(
arccos(y(x0))− arccos(y(0))

)
=

1

ω

(
arccos

(
α cos(ωx0)√

1 + α2

)
− arccos

(
α√

1 + α2

))
. (49)

The trajectory is depicted in fig. 2 for different values of α and ω. The curve of x1(x0) oscillates
nearly harmonically at small values of α and is forced into a triangle shaped curve at large values
of α, with a maximum value of

x1(x0) ≤ 1

ω

(
π − 2 arccos

α√
1 + α2

)
<
π

ω
, (50)

which is compatible with the frequency ω and the limiting speed of light.
Due to the periodic motion we have a similar situation as in the twin paradox, where one

twin is at rest at x1 = 0, say, so that his proper time coincides with the coordinate time x0. The
function x1(x0) then describes the trajectory of the other twin who has a different proper time
τ . The two twins meet when the function x1(x0) passes through zero. We are now interested
in the amount of time ∆x0 and ∆τ has passed for each of the twins between two consecutive
meetings. In order to do this we have to calculate the functional relation τ(x0) between the
proper time and the coordinate time using eq. (44),

τ(x0) =

x0∫
0

dt

ẋ0(t)
=

1

ω

ωx0∫
0

dϕ√
1 + α2 sin2 ϕ
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Figure 2: Trajectory x1(x0) as measured in the coordinate frame C plotted for varying α,
constant ω (left) and constant α, varying ω (right).

=
1

ω
F (ωx0,−α2), (51)

where the elliptic integral of the first kind F (φ, µ) is a function of amplitude φ and parameter
µ and is defined as,

F (φ, µ) =

φ∫
0

dt√
1− µ sin2 t

. (52)

In the coordinate frame C the time passed between two zeros of x1(x0) amounts to

∆x0 =
2π

ω
. (53)

Comparing this to the amount of proper time ∆τ that has passed in the rest frame of the
particle (the other twin) yields

∆τ

∆x0
=

2

π
√

1 + α2
K

(
α2

1 + α2

)
, (54)

where K(µ) = F (π/2, µ) is the complete elliptic integral of the first kind and where we have
used the relation

K(−µ) =
1√

1 + µ
K

(
µ

1 + µ

)
. (55)

The ratio ∆τ/∆x0 is depicted in fig. 3. It is equal to one for α = 0 and approaches 0 for
α→∞,

1 ≤ ∆τ

∆x0
< 0. (56)

Correspondingly, less time has passed between two passages of the accelerated particle (traveling
twin) through x1 = 0 in its rest-frame than in the coordinate frame C.
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4 The harmonic oscillator

In this section we will solve the problem of the relativistic harmonic oscillator. Again we choose
the coordinate system C as in section 3. For the harmonic oscillator the four-vector potential
in eq. (35) reads

eA(x) =
mω2(x1)2

2
e0. (57)

where ω is the cyclic frequency of the oscillation. The Lagrangian (31) and Hamiltonian (25)
read with this potential, respectively,

L(x, ẋ) =
m

2

[
−1− (ẋ0)2 + (ẋ1)2 + (ẋ2)2 + (ẋ3)2

]
− ẋ0mω

2(x1)2

2
,

H(x, p) =
−(p0 +mω2(x1)2/2)2 + (p1)

2 + (p2)
2 + (p3)

2 +m2

2m
. (58)

Again the Hamiltonian formalism turns out to be the more convenient choice for this particular
problem. We find from the equations of motion (30) that

ẋ0 = −
(
p0
m

+
(ωx1)2

2

)
, ṗ0 = 0,

ẋ1 =
p1
m
, ṗ1 =

(
p0
m

+
(ωx1)2

2

)
mω2x1,

ẋ2 =
p2
m

ṗ2 = 0,

ẋ3 =
p3
m

ṗ3 = 0 (59)

Further we consider the initial conditions

x(0) = de1, ẋ(0) = e0. (60)

Inserting these initial conditions into the equations of motion yields

x2 = x3 = p2 = p3 ≡ 0, p0 ≡ −m
(

1 +
(ωd)2

2

)
, (61)
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as well as

ẋ0 = 1 +
ω2(d 2 − (x1)2)

2
, ṗ1 = −mω2x1ẋ0. (62)

Differentiating the equation for ẋ1 in eqs. (59) with respect to τ and inserting the new expres-
sions for ṗ1 and ẋ0 yields a second order ordinary differential equation for x1,

ẍ1 = −ω2

(
1 +

ω2d 2

2

)
x1 +

ω4

2
(x1)3. (63)

This type of differential equation is satisfied by the Jacobi elliptic functions sn, cn and dn,
which are, respectively, defined as

sn(z, µ) = sin(φ(z, µ)),

cn(z, µ) = cos(φ(z, µ)),

dn(z, µ) =
√

1− µ sn2(z, µ), (64)

where the amplitude φ is defined as the inverse of the elliptic integral of the first kind

z = F (φ(z, µ), µ) ⇔ φ(z, µ) = F−1(z, µ), (65)

and where F (z, µ) is given in eq. (52). The sine and cosine amplitudes sn and cn satisfy,
respectively, the relations

sn(2nK(µ), µ) = 0, cn(2nK(µ), µ) = (−1)n,

sn((2n+ 1)K(µ), µ) = (−1)n, cn((2n+ 1)K(µ), µ) = 0. (66)

where n ∈ N and K means the complete elliptic integral of the first kind, K(µ) = F (π/2, µ).
The initial conditions (60) for x1 suggest the following ansatz

x1(τ) = A cn(Bωτ + C,D). (67)

Together with the following relation satisfied by the derivative of the cosine amplitude,

d cn

dz
(z, µ) = − sn(z, µ) dn(z, µ), (68)

we obtain

x1(0) = d = A cn(C,D),

ẋ1(0) = 0 = −ABω sn(C,D) dn(C,D). (69)

Since A,B 6= 0, we must have C = 2nK(D), n ∈ N. Choosing n = 0 we obtain A = d and
C = 0, so that

x1(τ) = d cn(Bωτ,D). (70)

Inserting this into eq. (63) yields

dB2ω2d
2 cn

dτ
(Bωτ,D) = −ω2

(
1 + 2α2

)
d cn(Bωτ,D) + 2ω2α2d cn3(Bωτ,D), (71)

where we have set α = ωd/2. Using the following relation satisfied by the second derivative of
the cosine amplitude,

d2 cn

d2z
(z, µ) = −(1− 2µ) cn(z, µ)− 2µ cn3(z, µ), (72)
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we may rewrite this equation as follows,

0 =
(
1 + 2α2 − (1− 2D)B2

)
cn(Bωτ,D)−

(
2B2D + 2α2

)
cn3(Bωτ,D). (73)

The expressions in both brackets have to vanish independently and so we obtain

B = ±1, D = −α2. (74)

Due to the symmetry of cn the sign of B does not matter and so we choose the positive. Thus
we obtain the following solution to the equations of motion (59),

ẋ0 = 1 + 2α2 sn2(ωτ,−α2),

ẋ1 = −2α sn(ωτ,−α2) dn(ωτ,−α2)

x1 = d cn(ωτ,−α2). (75)

Let us check the first line of this set of equations against the Hamiltonian constraint, H = 0,

(p0 +mω2(x1)2/2)2 = (p1)
2 +m2, (76)

which in turn implies

ẋ0 =
√

1 + (ẋ1)2 =

√
1 + 4α2 sn2(ωτ,−α2) dn2(ωτ,−α2)

=
√

1 + 4α2 sn2(ωτ,−α2) + 4α4 sn4(ωτ,−α2)

= 1 + 2α2 sn2(ωτ,−α2), (77)

in accord with the first line of eq. (75). Before we visualize the results in eqs. (75), however,
we should first investigate the functional relation between proper time τ and coordinate time
x0,

x0(τ) =

τ∫
0

dt ẋ0(t) = τ +
2α2

ω

ωτ∫
0

dt sn2(t,−α2). (78)

Recalling from eqs. (64) that

sn(t,−α2) = sin(F−1(t,−α2)), (79)

we may solve the integral by substituting

t = F (ψ,−α2), dt =
dψ√

1 + α2 sin2 ψ
, (80)

which yields

x0(τ) = τ +
2

ω

F−1(ωτ,−α2)∫
0

dψ
α2 sin2 ψ√

1 + α2 sin2 ψ

= τ +
2

ω

F−1(ωτ,−α2)∫
0

dψ

(√
1 + α2 sin2 ψ − 1√

1 + α2 sin2 ψ

)
. (81)
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Figure 4: Coordinate time x0 as a function of proper time τ for different values of d (left) and
ω (right) with the other variable held constant, respectively. The proper time τ is also plotted
with light dotted lines for comparison.

The first part of the integral represents the elliptic integral of the second kind E(φ, µ),

E(φ, µ) =

φ∫
0

dψ

√
1− µ sin2 ψ, (82)

while second part simply resolves to −2τ . Thus we finally obtain

x0(τ) = −τ +
2

ω
E(φ(ωτ,−α2),−α2), (83)

with the usual definition of the amplitude φ. The solution for x0(τ) is plotted in fig. 4 together
with the identity for comparison. The influence of the periodic motion on the shape of the
curve is quite apparent. One can also nicely see that time runs faster in the inertial frame
C than in the rest-frame of the accelerated particle. Relativistic effects become stronger if α
increases, i.e. with increasing d or ω.

Having the twin-paradox in mind it is apparent from fig. 4 that less time passes during a
period of motion in the rest-frame of the traveling twin than in the one of the resting twin.
As in section 3 we would like to compare the amount of proper time ∆τ to the amount of
coordinate time ∆x0 that has passed within one period. The Jacobi elliptic functions have a
period of 4K (along the real axis) and hence we have

∆τ

∆x0
=

1

2E(−α2)/K(−α2)− 1
, (84)

with the complete elliptic integral of the second kind E(µ) = E(π/2, µ), which satisfies the
relation

E(−µ) =
√

1 + µE

(
µ

1 + µ

)
. (85)

Together with eq. (55) we may express the ratio as

∆τ

∆x0
=

1

2(1 + α2)E(α2/(1+α2))
K(α2/(1+α2))

− 1
. (86)
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This results is plotted in fig. (5) as a function of α. As in section 3 it is equal to one for α = 0
and approaches 0 for α→∞,

1 ≤ ∆τ

∆x0
< 0. (87)

Correspondingly, less time has passed between two passages of the accelerated particle (traveling
twin) through x1 = d in its rest-frame than in the coordinate frame C.

To make the difference in the time variables more vivid we have plotted the velocity compo-
nent v1 = ẋ1/ẋ0 in fig. 6 both as a function of coordinate time x0 and proper time τ . One can
nicely see that the time dilation of x0, as compared to τ , leads to a longer oscillation period
with a strongly stretched curve when |v1(x0)| is close to one.

Finally we have plotted the elongation x1 both as a function of τ and x0 in fig. 7. The
curve shows a similar behavior as in fig. 2 but the comparison of x1(x0) with x1(τ) shows that
non-harmonic motion due to relativistic effects is more pronounced in the inertial frame C.

5 Summary

We have presented the formalism to describe the mechanics of an accelerated, relativistic point
particle under the influence of an external four-vector potential A. We have seen that the
formalism is actually quite simple and largely analogous to the non-relativistic formalism. Even
the general relativistic formalism has only a slightly different form. The detailed calculations,
though, are a bit more complicated in the relativistic case. Despite the fact that both examples
in this script are not quite realistic due to the neglect of radiative energy-loss, they are perfectly
suited to illustrate the relativistic formalism as they are not too simple and can yet be solved
analytically. Also they are able to show how the periodic motion is effected by the limiting
speed of light and time-dilation in the relativistic regime. Due to the periodic motion both
examples also represent a vivid version of the twin-paradox.

I hope this script was helpful to you to learn how to do calculations in relativistic mechanics
and to visualize some of the features of relativistic, accelerated motion.
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Figure 6: Velocity component v1 = ẋ1/ẋ0 as a function of proper time τ (solid lines) and
coordinate time x0 (dashed lines) for different values of d (left) and ω (right) with the other
variable held constant, respectively.
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Figure 7: Elongation x1 as a function of proper time τ (solid lines) and coordinate time x0

(dashed lines) for different values of d (left) and ω (right) with the other variable held constant,
respectively.
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